A Note on Krawtchouk Polynomials and Riordan Arrays
نویسنده
چکیده
The Krawtchouk polynomials play an important role in various areas of mathematics. Notable applications occur in coding theory [11], association schemes [4], and in the theory of group representations [21, 22]. In this note, we explore links between the Krawtchouk polynomials and Riordan arrays, of both ordinary and exponential type, and we study integer sequences defined by evaluating the Krawtchouk polynomials at different values of their parameters. The link between Krawtchouk polynomials and exponential Riordan arrays is implicitly contained in the umbral calculus approach to certain families of orthogonal polynomials. We shall look at these links explicitly in the following. The structure of this note is as follows. In the next section, we shall give a brief introduction to the relevant theory of both ordinary and exponential Riordan arrays. We then define the Krawtchouk polynomials, using exponential Riordan arrays, and look at some general properties of these polynomials from this perspective. We then show that for different values of the parameters used in the definition of the Krawtchouk polynomials, there exist interesting families of (ordinary) Riordan arrays.
منابع مشابه
A Study of Integer Sequences, Riordan Arrays, Pascal-like Arrays and Hankel Transforms
We study integer sequences and transforms that operate on them. Many of these transforms are defined by triangular arrays of integers, with a particular focus on Riordan arrays and Pascal-like arrays. In order to explore the structure of these transforms, use is made of methods coming from the theory of continued fractions, hypergeometric functions, orthogonal polynomials and most importantly f...
متن کاملThe Restricted Toda Chain, Exponential Riordan Arrays, and Hankel Transforms
with u0 = 0, where the dot indicates differentiation with respect to t. In this note, we shall show how solutions to this equation can be formulated in the context of exponential Riordan arrays. The Riordan arrays we shall consider may be considered as parameterised (or “time”-dependent) Riordan arrays. We have already considered parameterized Riordan arrays [1], exploring the links between the...
متن کاملA Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations
We study the Narayana triangles and related families of polynomials. We link this study to Riordan arrays and Hankel transforms arising from a special case of capacity calculation related to MIMO communication systems. A link is established between a channel capacity calculation and a series reversion.
متن کاملCharacterization of (c)-Riordan Arrays, Gegenbauer-Humbert-type polynomial sequences, and (c)-Bell polynomials
Here presented are the definitions of (c)-Riordan arrays and (c)-Bell polynomials which are extensions of the classical Riordan arrays and Bell polynomials. The characterization of (c)-Riordan arrays by means of the Aand Z-sequences is given, which corresponds to a horizontal construction of a (c)Riordan array rather than its definition approach through column generating functions. There exists...
متن کاملEulerian Polynomials as Moments, via Exponential Riordan Arrays
Using the theory of exponential Riordan arrays and orthogonal polynomials, we demonstrate that the Eulerian polynomials and the shifted Eulerian polynomials are moment sequences for a simple family of orthogonal polynomials. The coefficient arrays of these families of orthogonal polynomials are shown to be exponential Riordan arrays. Using the theory of orthogonal polynomials we are then able t...
متن کامل